arXiv:0707.2831v1 [quant-ph] 19 Jul 2007

Estimating Jones Polynomials is a Complete Problem for One
Clean Qubit

Peter W. Shor* and Stephen P. Jordan'

Abstract

It is known that evaluating a certain approximation to the Jones polynomial for the plat closure of
a braid is a BQP-complete problem. That is, this problem exactly captures the power of the quantum
circuit model[I2} 38} []. The one clean qubit model is a model of quantum computation in which all but one
qubit starts in the maximally mixed state. One clean qubit computers are believed to be strictly weaker
than standard quantum computers, but still capable of solving some classically intractable problems [20].
Here we show that evaluating a certain approximation to the Jones polynomial at a fifth root of unity
for the trace closure of a braid is a complete problem for the one clean qubit complexity class. That is,
a one clean qubit computer can approximate these Jones polynomials in time polynomial in both the
number of strands and number of crossings, and the problem of simulating a one clean qubit computer
is reducible to approximating the Jones polynomial of the trace closure of a braid.

1 One Clean Qubit

The one clean qubit model of quantum computation originated as an idealized model of quantum computation
on highly mixed initial states, such as appear in NMR implementations[20} [4]. In this model, one is given an
initial quantum state consisting of a single qubit in the pure state |0), and n qubits in the maximally mixed
state. This is described by the density matrix

I
=10) (0| ® —.
p=10) (0o -

One can apply any polynomial-size quantum circuit to p, and then measure the first qubit in the com-
putational basis. Thus, if the quantum circuit implements the unitary transformation U, the probability of
measuring |0) will be

po = Tx[(|0) (0] @ 1)U U] = 27" Tx[(|0) (0] © 1)U (|0) (0] ® 1)U]. (1)

Computational complexity classes are typically described using decision problems, that is, problems which
admit yes/no answers. This is mathematically convenient, and the implications for the complexity of non-
decision problems are usually straightforward to obtain (c.f. [22]). The one clean qubit complexity class
consists of the decision problems which can be solved in polynomial time by a one clean qubit machine with
correctness probability of at least 2/3. The experiment described in equation[I] can be repeated polynomially
many times. Thus, if p; > 1/2+ € for instances to which the answer is yes, and p; < 1/2 — € otherwise, then
by repeating the experiment poly(1/€) times and taking the majority vote one can achieve 2/3 probability of
correctness. Thus, as long as € is at least an inverse polynomial in the problem size, the problem is contained
in the one clean qubit complexity class. Following [20], we will refer to this complexity class as DQCI.

A number of equivalent definitions of the one clean qubit complexity class can be made. For example,
changing the pure part of the initial state and the basis in which the final measurement is performed does

*Mathematics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139. shor@math.mit.edu
TCenter for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139. sjordan@mit.edu

http://arxiv.org/abs/0707.2831v1

|O> po = 1+Re(<;/}|UW’>)

) —U —+

Figure 1: This circuit implements the Hadamard test. The probability po of measuring |0) is as shown above. Thus,
one can obtain the real part of ()| U |4) to precision € by making O(1/e?) measurements and counting what fraction
of the measurement outcomes are |0). Similarly, if the control bit is initialized to |1) instead of |0), one can estimate
the imaginary part of (| U |¢).

not change the resulting complexity class. Less trivially, allowing logarithmically many clean qubits results
in the same class, as discussed below. It is essential that on a given copy of p, measurements are performed
only at the end of the computation. Otherwise, one could obtain a pure state by measuring p thus making
all the qubits “clean” and re-obtaining BQP.

The study of quantum computation on high entropy initial states is partly motivated by the fact that low
entropy initial states are experimentally difficult to achieve in many systems. It may appear artificial that
in the one clean qubit model, there are some pure qubits and some maximally mixed qubits. However, given
an arbitrary n-qubit state p, one can use the technique of “algorithmic cooling” [23] to unitarily separate this
into n — s pure qubits and s maximally mixed qubits, where s is the von Neumann entropy of p.

Any 2™ x 2™ unitary matrix can be decomposed as a linear combination of n-fold tensor products of
Pauli matrices. As discussed in[20], the problem of estimating a coefficient in the Pauli decomposition of a
quantum circuit to polynomial accuracy is a DQC1-complete problem. Estimating the normalized trace of
a quantum circuit is a special case of this, and it is also DQC1-complete. This point is discussed in[24]. To
make our presentation self-contained, we will sketch here a proof that trace estimation is DQC1-complete.
Technically, we should consider the decision problem of determining whether the trace is greater than a given
threshold. However, the trace estimation problem is easily reduced to its decision version by the method of
binary search, so we will henceforth ignore this point.

First we’ll show that trace estimation is contained in DQC1. Suppose we are given a quantum circuit on
n qubits which consists of polynomially many gates from some finite universal gate set. Given a state |1)) of
n qubits, there is a standard technique for estimating (| U |¢), called the Hadamard test [3], as shown in
figure [l Now suppose that we use the circuit from figure [l but choose |¢) uniformly at random from the
2" computational basis states. Then the probability of getting outcome |0) for a given measurement will be

1 1+ Re({(z|U|z)) 1+ Re(TrU)
Po = 7~ Z 2 = on+1

n
xze{0,1}n

Choosing |¢) uniformly at random from the 2" computational basis states is exactly the same as using the
density matrix I/2™ for this register. Thus, the only clean qubit is the control qubit. Trace estimation
is therefore achieved in the one clean qubit model by converting the given circuit for U into a circuit for
controlled-U and conjugating the control bit with Hadamard gates. One can convert a circuit for U into a
circuit for controlled-U by replacing each gate G with a circuit for controlled-G. The overhead incurred is
thus bounded by a constant factor [21].

Next we’ll show that trace estimation is hard for DQC1. Suppose we are given a classical description of
a quantum circuit implementing some unitary transformation U on n qubits. As shown in equation [, the
probability of obtaining outcome |0) from the one clean qubit computation of this circuit is proportional to
the trace of the non-unitary operator (|0) (0| ® I)U(|0) (0] ® I)UT, which acts on n qubits. Estimating this

Ja
Y

A
>

Figure 2: Here CNOT gates are used to simulate 3 clean ancilla qubits.

can be achieved by estimating the trace of

Ut U
U = 7 7

N
€U

which is a unitary operator on n 4+ 2 qubits. This suffices because
1
Tr[(|0) (0| ® I)U(]0) (0] @ I)UT] = ZTr[U’].
To see this, we can think in terms of the computational basis:

T = Y (a|U|x).

ze{0,1}n

If the first qubit of |z) is [1), then the rightmost CNOT will flip the lowermost qubit. The resulting state will
be orthogonal to |z) and the corresponding matrix element will not contribute to the trace. Thus this CNOT
gate simulates the initial projector |0) (0] ® I. Similarly, the other CNOT simulates the other projector.

The preceding analysis shows that, given a description of a quantum circuit implementing a unitary
transformation U on n-qubits, the problem of approximating 2inTr U to within :I:m precision is DQC1-
complete.

Some unitaries may only be efficiently implementable using ancilla bits. That is, to implement U on
n-qubits using a quantum circuit, it may be most efficient to construct a circuit on n + m qubits which acts
as U ® I, provided that the m ancilla qubits are all initialized to |0). These ancilla qubits are used as work
bits in intermediate steps of the computation. To estimate the trace of U, one can construct a circuit U, on
n + 2m qubits by adding CNOT gates controlled by the m ancilla qubits and acting on m extra qubits, as
shown in figure 2l This simulates the presence of m clean ancilla qubits, because if any of the ancilla qubits
is in the |1) state then the CNOT gate will flip the corresponding extra qubit, resulting in an orthogonal
state which will not contribute to the trace.

With one clean qubit, one can estimate the trace of U, to a precision of gniam

poly(n,m)"
Tr[U,] = 2™Tr[U]. Thus, if m is logarithmic in n, then one can obtain Tr[U] to precision #n(n),
be obtained for circuits not requiring ancilla qubits. This line of reasoning also shows that the k-clean qubit
model gives rise to the same complexity class as the one clean qubit model, for any constant k, and even for
k growing logarithmically with n.

It seems unlikely that the trace of these exponentially large unitary matrices can be estimated to this
precision on a classical computer in polynomial time. Thus it seems unlikely that DQCI is contained in P.
(For more detailed analysis of this point see [9].) However, it also appears unlikely that DQC1 contains all of
P. By applying Barrington’s theorem|[7], it has been shown that DQC1 contains NC1, the class of problems
solvable by logarithmic depth classical circuits [4]. These relationships are summarized in figure Bl

By construction,

just as can

BQP

()

Figure 3: Summary of known relationships between DQC1 and other complexity classes.

& @

Figure 4: Shown from left to right are the unknot, another representation of the unknot, an oriented trefoil knot,
and the Hopf link. Broken lines indicate undercrossings.

2 Jones Polynomials

A knot is defined to be an embedding of the circle in R? considered up to continuous transformation (isotopy).
More generally, a link is an embedding of one or more circles in R? up to isotopy. In an oriented knot or
link, one of the two possible traversal directions is chosen for each circle. Some examples of knots and links
are shown in figure [One of the fundamental tasks in knot theory is, given two representations of knots,
which may appear superficially different, determine whether these both represent the same knot. In other
words, determine whether one knot can be deformed into the other without ever cutting the strand.

Reidemeister showed in 1927 that two knots are the same if and only if one can be deformed into the
other by some sequence constructed from three elementary moves, known as the Reidemeister moves, shown
in figure Bl This reduces the problem of distinguishing knots to a combinatorial problem, although one for
which no efficient solution is known. In some cases, the sequence of Reidemeister moves needed to show
equivalence of two knots involves intermediate steps that increase the number of crossings. Thus, it is
very difficult to show upper bounds on the number of moves necessary. The most thoroughly studied knot
equivalence problem is the problem of deciding whether a given knot is equivalent to the unknot. Even
showing the decidability of this problem is highly nontrivial. This was achieved by Haken in 1961[13]. In
1998 it was shown by Hass, Lagarias, and Pippenger that the problem of recognizing the unknot is contained
in NP[I4].

Starting with the Alexander polynomial, discovered in 1928, a number of knot invariants have been
discovered. These are functions which are invariant under Reidemeister moves, thus a knot invariant will
always take the same value for different representations of the same knot, such as the two representations
of the unknot shown in figure @ In general, there can be distinct knots which a knot invariant fails to
distinguish.

D ||._—/) «»:D/ 1

Figure 5: Two knots are the same if and only if one can be deformed into the other by some sequence of the three
Reidemeister moves shown above.

One of the best known knot invariants is the Jones polynomial, discovered in 1985 by Vaughan Jones[I7].
To any oriented knot or link, it associates a Laurent polynomial in the variable t'/2. The Jones polynomial
has a degree in ¢ which grows at most linearly with the number of crossings in the link. The coeflicients
are all integers, but they may be exponentially large. Exact evaluation of Jones polynomials at all but a
few special values of ¢ is #P-hard[I5]. The Jones polynomial can be defined recursively by a simple “skein”
relation. However, for our purposes it will be more convenient to use a definition in terms of a representation
of the braid group, as discussed below.

3 88 &)

Figure 6: Shown from left to right are a braid, its plat closure, and its trace closure.

To describe in more detail the computation of Jones polynomials we must specify how the knot will
be represented on the computer. Although an embedding of a circle in R? is a continuous object, all the
topologically relevant information about a knot can be described in the discrete language of the braid group.
Links can be constructed from braids by joining the free ends. Two ways of doing this are taking the
plat closure and the trace closure, as shown in figure Alexander’s theorem states that any link can be
constructed as the trace closure of some braid. Any link can also be constructed as the plat closure of some
braid. This can be easily proven as a corollary to Alexander’s theorem, as shown in figure [7

u

Figure 7: A trace closure of a braid on n strands can be converted to a plat closure of a braid on 2n strands by
moving the “return” strands into the braid.

Given that the trace closure provides a correspondence between links and braids, one may attempt to
find functions on braids which yield link invariants via this correspondence. Markov’s theorem shows that
a function on braids will yield a knot invariant provided it is invariant under the two Markov moves, shown
in figure B Thus the Markov moves provide an analogue for braids of the Reidemeister moves on links. The
constraints imposed by invariance under the Reidemeister moves are enforced in the braid picture jointly by
invariance under Markov moves and by the defining relations of the braid group.

A linear function f satisfying f(AB) = f(BA) is called a trace. The ordinary trace on matrices is one
such function. Taking a trace of a representation of the braid group yields a function on braids which is
invariant under Markov move I. If the trace and representation are such that the resulting function is also

(

Figure 8: Shown are the two Markov moves. Here the boxes represent arbitrary braids. If a function on braids is
invariant under these two moves, then the corresponding function on links induced by the trace closure is a link
invariant.

invariant under Markov move II, then a link invariant will result. The Jones polynomial can be obtained in
this way.

In [3], Aharonov, et al. show that an additive approximation to the Jones polynomial of the plat or trace
closure of a braid at t = €>"/* can be computed on a quantum computer in time which scales polynomially
in the number of strands and crossings in the braid and in k. In [Il 27], it is shown that for plat closures,
this problem is BQP-complete. The complexity of approximating the Jones polynomial for trace closures
was left open, other than showing that it is contained in BQP.

The results of [3, [Il 27] reformulate and generalize the previous results of Freedman et al. [12] I1],
which show that certain approximations of Jones polynomials are BQP-complete. The work of Freedman
et al. in turn builds upon Witten’s discovery of a connection between Jones polynomials and topological
quantum field theory [26]. Recently, Aharonov et al. have generalized further, obtaining an efficient quantum
algorithm for approximating the Tutte polynomial for any planar graph, at any point in the complex plane,
and also showing BQP-hardness at some points [2]. As special cases, the Tutte polynomial includes the
Jones polynomial, other knot invariants such as the HOMFLY polynomial, and partition functions for some
physical models such as the Potts model.

The algorithm of Aharonov et al. works by obtaining the Jones polynomial as a trace of the path model
representation of the braid group. The path model representation is unitary and, as shown in [3], can be
efficiently implemented by quantum circuits. For computing the trace closure of a braid the necessary trace
is similar to the ordinary matrix trace except that only a subset of the diagonal elements of the unitary
implemented by the quantum circuit are summed, and there is an additional weighting factor. For the plat
closure of a braid the computation instead reduces to evaluating a particular matrix element of the quantum
circuit. Aharonov et al. also use the path model in their proof of BQP-completeness.

Given a braid b, we know that the problem of approximating the Jones polynomial of its plat closure
is BQP-hard. By Alexander’s theorem, one can obtain a braid b’ whose trace closure is the same link as
the plat closure of b. The Jones polynomial depends only on the link, and not on the braid it was derived
from. Thus, one may ask why this doesn’t immediately imply that estimating the Jones polynomial of the
trace closure is a BQP-hard problem. The answer lies in the degree of approximation. As discussed in
section [0 the BQP-complete problem for plat closures is to approximate the Jones polynomial to a certain
precision which depends exponentially on the number of strands in the braid. The number of strands in o’
can be larger than the number of strands in b, hence the degree of approximation obtained after applying
Alexander’s theorem may be too poor to solve the original BQP-hard problem.

The fact that computing the Jones polynomial of the trace closure of a braid can be reduced to estimating
a generalized trace of a unitary operator and the fact that trace estimation is DQCI1-complete suggest a
connection between Jones polynomials and the one clean qubit model. Here we find such a connection by
showing that evaluating a certain approximation to the Jones polynomial Jones polynomial of the trace
closure of a braid at a fifth root of unity is DQC1-complete. The main technical difficulty is obtaining the
Jones polynomial as a trace over the entire Hilbert space rather than as a summation of some subset of the
diagonal matrix elements. To do this we will not use the path model representation of the braid group, but
rather the Fibonacci representation, as described in the next section.

WY,

* p p *

Figure 9: For an n-strand braid we can write a length n + 1 string of p and * symbols across the base. The string
may have no two stars in a row, but can be otherwise arbitrary.

we| X -|-X-

i i+1 n i i+1 n

Figure 10: o; denotes the elementary crossing of strands i and i + 1. The braid group on n strands B,, is generated
by o1 ...0n-1, which satisfy the relations o;0; = ojo for |i — j| > 1 and 0i410:0i+1 = 0it10:0i4+1 for all . The group
operation corresponds to concatenation of braids.

3 Fibonacci Representation
The Fibonacci representation p;?) of the braid group B,, is described in [I§] in the context of Temperley-Lieb
recoupling theory. This is a mathematical framework, which in this case describes two species of idealized
“particles” denoted by p and *. We will not delve into the conceptual and mathematical underpinnings
of Temperley-Lieb recoupling theory. For present purposes, it will be sufficient to regard it as a formal
procedure for obtaining a particular unitary representation of the braid group whose trace yields the Jones
polynomial at t = —e®™/%, Throughout most of this paper it will be more convenient to express the Jones
polynomial in terms of A = ¢7/5, with t defined by t = A~%.

Given an n-strand braid b € B,,, we can write a length n + 1 string of p and * symbols across the base
as shown in figure[@ These strings have the restriction that no two * symbols can be adjacent. The number
of such strings is f,,3, where f, is the n*® Fibonacci number, defined so that f; = 1, fo = 1, f3 = 2,...
Thus the formal linear combinations of such strings form an f,,;3-dimensional vector space. For each n, the
Fibonacci representation p;?) is a homomorphism from B,, to the group of unitary linear transformations on
this space. We will describe the Fibonacci representation in terms of its action on the elementary crossings
which generate the braid group, as shown in figure

The elementary crossings correspond to linear operations which mix only those strings which differ by
the symbol beneath the crossing. The linear transformations have a local structure, so that the coefficients
for the symbol beneath the crossing to be changed or unchanged depend only on that symbol and its two
neighbors. For example, using the notation of [18],

P xp P xp PP P (2)

which means that the elementary crossing o; corresponds to a linear transformation which takes any string
whose i*? through (i 4+ 2)* symbols are p * p to the coefficient ¢ times the same string plus the coefficient
d times the same string with the * at the (i + 1)*® position replaced by p. (As shown in figure 9, the ‘!
crossing is over the (i + 1) symbol.) To compute the linear transformation that the representation of a
given braid applies to a given string of symbols, one can write the symbols across the base of the braid, and
then apply rules of the form 2luntil all the crossings are removed, and all that remains are various coefficients

for different strings to be written across the base of a set of straight strands.
For compactness, we will use (p¥p) = c(p * p) + d(ppp) as a shorthand for equation 2l In this notation,
the complete set of rules is as follows.

(xpp) = a(*pp)
(xpx) = b(xpx)
(p¥p) = c(p*p)+d(ppp)
(ppx) = alppx)
(ppp) = d(p*p)+ e(ppp), (3)
where
a = -—-A*
b = A
c = A%7% - Alr
d = A373/2 4 AY32
e = ASr— Atr?
A = ei3n/s

T o= 2/(1+V5). (4)

Using these rules we can calculate any matrix from the Fibonacci representation of the braid group.
Notice that this is a reducible representation. These rules do not allow the rightmost symbol or leftmost
symbol of the string to change. Thus the vector space decomposes into four invariant subspaces, namely the
subspace spanned by strings which begin and end with p, and the *...%, p...*, and *...p subspaces. As
an example, we can use the above rules to compute the action of B3 on the *...p subspace.

@) y_| b 0] *psp @, _ [c¢ d] *psp
R A IS R CA B B ®)
In appendix [Al we prove that the Jones polynomial evaluated at t = —e?37/>
trace of the Fibonacci representation over the *...x and *...p subspaces.

can be obtained as a weighted

4 Computing the Jones Polynomial in DQC1

As mentioned previously, the Fibonacci representation acts on the vector space of formal linear combinations
of strings of p and * symbols in which no two * symbols are adjacent. The set of length n strings of this
type, P,, has f, 2 elements, where f, is the n'" Fibonacci number: f; =1, fo = 1, f3 = 2, and so on. As
shown in appendix [C] one can construct a bijective correspondence between these strings and the integers
from 0 to f,42 — 1 as follows. If we think of * as 1 and p as 0, then with a string s,s,—1...s1 we associate
the integer

n
2(s) =Y sifirt. (6)
i=1
This is known as the Zeckendorf representation.

Representing integers as bitstrings by the usual method of place value, we thus have a correspondence
between the elements of P,, and the bitstrings of length b = [log,(fn+2)]. This correspondence will be a key
element in computing the Jones polynomial with a one clean qubit machine. Using a one clean qubit machine,
one can compute the trace of a unitary over the entire Hilbert space of 2™ bitstrings. Using CNOT gates
as above, one can also compute with polynomial overhead the trace over a subspace whose dimension is a

polynomially large fraction of the dimension of the entire Hilbert space. However, it is generally not possible
to compute the trace over subspaces whose dimension is an exponentially small fraction of the dimension
of the total Hilbert space. For this reason, directly mapping the strings of p and * symbols to strings of 1
and 0 will not work. In contrast, the correspondence described in equation [6l maps P, to a subspace whose
dimension is at least half the dimension of the full 2°-dimensional Hilbert space.

In outline, the DQC1 algorithm for computing the Jones polynomial works as follows. Using the results
described in section Il we will think of the quantum circuit as acting on b maximally mixed qubits plus
O(1) clean qubits. Thinking in terms of the computational basis, we can say that the first b qubits are in
a uniform probabilistic mixture of the 2 classical bitstring states. By equation [6] most of these bitstrings
correspond to elements of P,. In the Fibonacci representation, an elementary crossing on strands ¢ and ¢ — 1
corresponds to a linear transformation which can only change the value of the i*® symbol in the string of p’s
and *’s. The coefficients for changing this symbol or leaving it fixed depend only on the two neighboring
symbols. Thus, to simulate this linear transformation, we will use a quantum circuit which extracts the
(i —)™ ¢*8 and (i 4+ 1)'" symbols from their bitstring encoding, writes them into an ancilla register while
erasing them from the bitstring encoding, performs the unitary transformation prescribed by equation [l on
the ancillas, and then transfers this symbol back into the bitstring encoding while erasing it from the ancilla
register. Constructing one such circuit for each crossing, multiplying them together, and performing DQC1
trace-estimation yields an approximation to the Jones polynomial.

Performing the linear transformation demanded by equation [3] on the ancilla register can be done easily
by invoking gate set universality (c¢f. Solovay-Kitaev theorem [21]) since it is just a three-qubit operation.
The harder steps are transferring the symbol values from the bitstring encoding to the ancilla register and
back.

It may be difficult to extract an arbitrary symbol from the bitstring encoding. However, it is relatively
easy to extract the leftmost “most significant” symbol, which determines whether the Fibonacci number f,,
is present in the sum [6l This is because, for a string s of length n, z(s) > f,—1 if and only if the leftmost
symbol is *. Thus, starting with a clean |0) ancilla qubit, one can transfer the value of the leftmost symbol
into the ancilla as follows. First, check whether z(s) (as represented by a bitstring using place value) is
> fn—1. If so flip the ancilla qubit. Then, conditioned on the value of the ancilla qubit, subtract f,_; from
the bitstring. (The subtraction will be done mod 2° for reversibility.)

The basic operations of arithmetic and comparison for integers can all be done classically by NC1 circuits
[25]. Tt follows that this procedure can be done in DQC1. More specifically, Krapchenko’s algorithm for
adding two n-bit numbers has depth [logn]|+ O(y/logn) [25]. A lower bound of depth logn is also known, so
this is essentially optimal [25]. Barrington’s construction [7] yields a sequence of 22¢ gates on 3 clean ancilla
qubits [4] to simulate a circuit of depth d. Thus we obtain an addition circuit which has quadratic size (up
to a subpolynomial factor). Subtraction can be obtained analogously, and one can determine whether a > b
can be done by subtracting a from b and looking at whether the result is negative.

Although the construction based on Barrington’s theorem has polynomial overhead and is thus sufficient
for our purposes, it seems worth noting that it is possible to achieve better efficiency. As shown by Draper
[10], there exist ancilla-free quantum circuits for performing addition and subtraction, which succeed with
high probability and have nearly linear size. Specifically, one can add or subtract a hardcoded number a into
an n-qubit register |x) modulo 2" by performing quantum Fourier transform, followed by O(n?) controlled-
rotations, followed by an inverse quantum Fourier transform. Furthermore, using approximate quantum
Fourier transforms[6], [I0] describes an approximate version of the circuit, which, for any value of parameter
m, uses a total of only O(mn logn) gates to produce an output having an inner product with |z + a mod 2™)
of 1— 02 ™[

Because they operate modulo 2", Draper’s quantum circuits for addition and subtraction do not imme-
diately yield fast ancilla-free quantum circuits for comparison, unlike the classical case. Instead, start with
an n-bit number z and then introduce a single clean ancilla qubit initialized to |0). Then subtract an n-bit
hardcoded number a from this register modulo 2"+, If ¢ > x then the result will wrap around into the

1A linear-size quantum circuit for exact ancilla-free addition is known, but it does not generalize easily to the case of
hardcoded summands [8].

1 2 3 5|13 8 5 3 2 1
(6,5)

* pp *|p p * p pp
Figure 11: Here we make a correspondence between strings of p and * symbols and ordered pairs of integers. The
string of 9 symbols is split into substrings of length 4 and 5, and each one is used to compute an integer by adding

the (i + 1)°h Fibonacci number if % appears in the i place. Note the two strings are read in different directions.

range [27,2"F1 — 1], in which case the leading bit will be 1. If a < x then the result will be in the range
[0,2™ — 1]. After copying the result of this leading qubit and uncomputing the subtraction, the comparison
is complete. Alternatively, one could use the linear size quantum comparison circuit devised by Takahashi
and Kunihiro, which uses n uninitialized ancillas but no clean ancillas.

Unfortunately, most crossings in a given braid will not be acting on the leftmost strands. However, we
can reduce the problem of extracting a general symbol to the problem of extracting the leftmost symbol.
Rather than using equation [@ to make a correspondence between an string from P, and a single integer,
we can split the string at some chosen point, and use equation [l on each piece to make a correspondence
between elements of P, and ordered pairs of integers, as shown in figure [[1l To extract the i*" symbol, we
thus convert encoding [6 to the encoding where the string is split between the i*" and (i — 1) symbols, so
that one only needs to extract the leftmost symbol of the second string. Like equation [6 this is also an
efficient encoding, in which the encoded bitstrings form a large fraction of all possible bitstrings.

To convert encoding [0] to a split encoding with the split at an arbitrary point, we can move the split
rightward by one symbol at a time. To introduce a split between the leftmost and second-to-leftmost symbols,
one must extract the leftmost symbol as described above. To move the split one symbol to the right, one
must extract the leftmost symbol from the right string, and if it is * then add the corresponding Fibonacci
number to the left string. This is again a procedure of addition, subtraction, and comparison of integers.
Note that the computation of Fibonacci numbers in NC1 is not necessary, as these can be hardcoded into
the circuits. Moving the split back to the left works analogously. As crossings of different pairs of strands
are being simulated, the split is moved to the place that it is needed. At the end it is moved all the way
leftward and eliminated, leaving a superposition of bitstrings in the original encoding, which have the correct
coefficients determined by the Fibonacci representation of the given braid.

Lastly, we must consider the weighting in the trace, as described by equation @l Instead of weight W,
we will use W /¢ so that the possible weights are 1 and 1/¢ both of which are < 1. We can impose any
weight < 1 by doing a controlled rotation on an extra qubit. The CNOT trick for simulating a clean qubit
which was described in section[I] can be viewed as a special case of this. All strings in which that qubit takes
the value |1) have weight zero, as imposed by a 7/2 rotation on the extra qubit. The weighting will cause
only a polynomial overhead in the number of measurements needed to get a given precision provided that
> |Ws|? is only polynomially small. This is clearly the case for W, as defined in [0

5 DQC1-hardness of Jones Polynomials

As mentioned in section [3] the Fibonacci representation p;?) is reducible. Let pf(;) denote the representation

of the braid group B, defined by the action of pgl) on the vector space spanned by strings which begin

and end with *. As shown in appendix [B] pgﬂ) (B,,) taken modulo phase is a dense subgroup of SU(f,—1).
Similarly, p")(B,,) and p{)(B,) are dense subgroups of SU(f,) modulo phase. However, p{%(B,) is not a
dense subgroup of the corresponding unitary group. This necessitates some additional care in proving the
DQC1-hardness result.

Given a quantum circuit, we will construct a braid whose Fibonacci representation performs essentially a
gate-by-gate simulation of the circuit. To do this, we will use a version of the Solovay-Kitaev theorem which

appears in [19].

10

Theorem 1 (Solovay-Kitaev) Suppose matrices Uy, ..., U, generate a dense subgroup in SU(d). Then,
given a desired unitary U € SU(d), and a precision parameter § > 0, there is an algorithm to find a product
V of Uy,...,Uy and their inverses such that ||V —U| < 6. The length of the product and the runtime of the
algorithm are both polylogarithmic in 1/6 and polynomial in d and r.

Next, we must specify an encoding, that is, a map n : Q, — S, from the set @, of strings of p and *
symbols which start with * and have no two % symbols in a row, to S,,, the set of bitstrings of length m.
Unlike in section [we will not use a one to one encoding between bit strings and strings of p and * symbols.
All we require is that a sum over all strings of p and * symbols corresponds to a sum over bitstrings in which
each bitstring appears an equal number of times. Equivalently, all bitstrings b € S,, must have a preimage
n~1(b) of the same size. This insures an unbiased trace in which no bitstrings are overweighted. To achieve
this we can use the encoding

ppp — O
pxp — 1 (7)

The strings other than ppp and p*p do not correspond to any bit value. Since both the encoded 1 and the
encoded 0 begin and end with p, they can be preceded and followed by any allowable string. Thus, changing
an encoded 1 to an encoded zero does not change the number of allowed strings of p and * consistent with
that encoded bitstring. Thus the condition that [n~!(b)| be independent of b is satisfied.

We would also like to know a priori where in the string of p and * symbols a given bit is encoded. This
way, when we need to simulate a gate acting on a given bit, we would know which strands the corresponding
braid should act on. If we were to simply divide our string of symbols into blocks of three and write down
the corresponding bit string (skipping every block which is not in one of the two coding states ppp and p#p)
then this would not be the case. Thus, to encode n bits, we will instead divide the string of symbols into
n blocks, each of size clogn for some constant c¢. To decode a block, scan it from left to right until you
reach either a ppp string or a pxp string. The first such string encountered determines whether the block
encodes a 1 or a 0, according to equation [l Now imagine we choose a string randomly from Qcpiogn- By
choosing the constant prefactor ¢ in our block size we can ensure that in the entire c¢nlogn string of symbols,
the probability of there being any noncoding block which contains neither ppp nor p*p anywhere within it
is polynomially small. If this is the case, then these noncoding strings will contribute only a polynomially
small additive error to the estimate of the circuit trace, on par with the other sources of error.

The gate set consisting of the CNOT, Hadamard, and 7/8 gates is known to be universal for BQP [21].
Thus, it suffices to consider the simulation of 1-qubit and 2-qubit gates. Furthermore, it is sufficient to
imagine the qubits arranged on a line and to allow 2-qubit gates to act only on neighboring qubits. This
is because qubits can always be brought into neighboring positions by applying a series of SWAP gates to
nearest neighbors. By our encoding a unitary gate applied to qubits ¢ and ¢ + 1 will correspond to a unitary
transformation on symbols iclogn through (i 4+ 3)clogn — 1.

By the Solovay-Kitaev theorem, one can efficiently construct arbitrary unitaries in SU(d) where d is
polynomial. Hence, we can obtain arbitrary unitaries on strings of logarithmically many p and * symbols.
Thus if a % symbol were known to be within logarithmic distance of the target symbols then by the density
results of appendix [B] and the Solovay-Kitaev theorem, a braid corresponding to the desired gate could be
efficiently constructed. However, this will not be the case for all strings in the trace. Thus we need a way to
unitarily bring * symbols to where they are needed.

To do this we’ll use an “inchworm” structure which brings a pair of * symbols rightward to where they
are needed. Specifically, suppose we have a pair of blocks which each have a * in their exact center. The
presence of the left * and the density of p., allow us to use the Solovay-Kitaev theorem to unitarily move
the right * one block to the right by adding polynomially many crossings to the braid. Then, the presence of
the right * and the density of p,. allow us to similarly move the left * one block to the right, thus bringing
it into the block adjacent to the one which contains the right *. To move the inchworm to the left we use
the inverse operation.

2We can always choose the block size to be odd.

11

/S\Ep\A

*xPPPEPxPx *xpPP*x@*PpPP

Figure 12: This unitary procedure starts with a * in the current block and brings it to the center of the target block.

To simulate a given gate, one first uses the previously described procedure to make the inchworm crawl
to the blocks just to the left of the blocks which encode the qubits on which the gate acts. Then, by the
density of p., and the Solovay-Kitaev theorem, the desired gate can be simulated using polynomially many
braid crossings.

It remains to specify the exact unitary operations which move the inchworm. Suppose we have a current
block and a target block. The current block contains a * in its center, and the target block is the next block
to the right or left. We wish to move the * to the center of the target block. To do this, we can select the
smallest segment around the center such that in each of these blocks, the segment is bordered on its left and
right by p symbols. This segment can then be swapped, as shown in figure

For some possible strings this procedure will not be well defined. Specifically there may not be any segment
which contains the center and which is bordered by p symbols in both blocks. On such strings we define the
operation to act as the identity. For random strings, the probability of this decreases exponentially with the
block size. Thus, by choosing c sufficiently large we can make this negligible for the entire computation.

As the inchworm moves rightward, it leaves behind a trail. Due to the swapping, the blocks are not
in their original state after the inchworm has passed. However, because the operations are unitary, when
the inchworm moves back to the left, the modifications to the blocks get undone. Thus the inchworm can
shuttle back and forth, moving where it is needed to simulate each gate, always stopping just to the left of
the blocks corresponding to the encoded qubits.

To get this process started, the leftmost two blocks must each contain a * at their center. This occurs
with constant probability. The strings in which this is not the case can be prevented from contributing to
the trace by a technique analogous to that used in section [l to simulate logarithmically many clean ancillas.
Namely, an extra encoded qubit can be conditionally flipped if the first two blocks do not both have * symbols
at their center. This can always be done using the Solovay-Kitaev theorem, since the leftmost symbol in the
string is always *, and the p., and p.. representations are both dense.

The only remaining detail to consider is that the trace appearing in the Jones polynomial is weighted
depending on whether the last symbol is p or *, whereas the DQC1-complete trace estimation problem is for
completely unweighted traces. This problem is easily solved. Just introduce a single extra logarithmic size
block of symbols at the end of the string. After bringing the inchworm adjacent to the last block, apply a
unitary which performs a conditional rotation on the qubit encoded by this block. The rotation will be by
an angle so that the inner product of the rotated qubit with its original state is 1/¢ where ¢ is the golden
ratio. This will be done only if the last symbol is p. This exactly cancels out the weighting which appears
in the formula for the Jones polynomial, as described in appendix [Al

Thus, for appropriate €, approximating the Jones polynomial of the trace closure of a braid to within +e
is DQC1-hard.

6 Conclusion

The preceding sections show that the problem of approximating the Jones polynomial of the trace closure
of a braid with n strands and m crossings to within +e at t = —e®™/5 is a DQCI-complete problem
for appropriate €. The proofs are based on the problem of evaluating the Markov trace of the Fibonacci

representation of a braid to m precision. By equation[I0] we see that this corresponds to evaluating the

D" | ; precision, where D = —A? — A=2 = 2cos(67/5). Whereas approximating

Jones polynomial with iW

12

the Jones polynomial of the plat closure of a braid was known[I] to be BQP-complete, it was previously
only known that the problem of approximating the Jones polynomial of the trace closure of a braid was in
BQP. Understanding the complexity of approximating the Jones polynomial of the trace closure of a braid
Wnl) was posed as an open problem in [3]. This paper shows that for A = ¢™7/ this
problem is DQC1-complete. Such a completeness result improves our understanding of both the difficulty of
the Jones polynomial problem and the power one clean qubit computers, by finding an equivalence between
the two.

It is generally believed that DQC1 is not contained in P and does not contain all of BQP. The DQC1-
completeness result shows that if this belief is true, it implies that approximating the Jones polynomial of
the trace closure of a braid is not so easy that it can be done classically in polynomial time, but is not so
difficult as to be BQP-hard.

To our knowledge, the problem of approximating the Jones polynomial of the trace closure of a braid is
one of only two known candidates for classically intractable problems solvable on a one clean qubit computer.
The other is estimating the Pauli decomposition of the unitary matrix corresponding to a polynomial-size
quantum circuitﬁ, as described in [20, 24] and recounted in section[Il Since the Pauli decomposition problem
is explicitly formulated in terms of quantum circuits, the Jones polynomial problem is thus the only candidate
problem which comes from outside of quantum computation.

to precision =+

7 Acknowledgements

The authors thank David Vogan, Pavel Etingof, Wim van Dam, Aram Harrow, and Daniel Nagaj for useful
discussions. PS gratefully acknowledges support from the W. M. Keck foundation and from the NSF under
grant number CCF-0431787. SJ gratefully acknowledges support from ARO/DTO’s QuaCGR program.

A Jones Polynomials by Fibonacci Representation

For any braid b € B,, we will define ﬁ(b) by:
s

ﬁ(b):m 3 Wsi@ (8)

56Qn+1 S

We will use | to denote a strand and { to denote multiple strands of a braid (in this case n). Q41 is the
set of all strings of n 4+ 1 p and * symbols which start with % and contain no two % symbols in a row. The

symbol
S

;

S

denotes the s, s matrix element of the Fibonacci representation of braid b. The weight W is

| ¢ if s ends with p
W = { 1 if s ends with *. (9)

¢ is the golden ratio (1 +v/5)/v/2.
As discussed in [3], the Jones polynomial of the trace closure of a braid b is given by

Vi (A1) = (= A)* D DT (p o (b)) (10)

3This includes estimating the trace of the unitary as a special case.

13

b'r is the link obtained by taking the trace closure of braid b. w(b') is denotes the writhe of the link b**. For
an oriented link, one assigns a value of 4+1 to each crossing of the form Y, and the value —1 to each crossing

of the form . The writhe of a link is defined to be the sum of these values over all crossings. D is defined
by D = —A?2 — A=2. pa : B, — TL,(D) is a representation from the braid group to the Temperley-Lieb
algebra with parameter D. Specifically,

palo)) = AE; + A~'1 (11)

where Fj ... E, are the generators of TL,, (D), which satisfy the following relations.

EiEj = E]El for |Z —j| >1 (12)
E;E4FE; = E; (13)
E} = DE; (14)

The Markov trace on TL, (D) is a linear map Tr : TL,, (D) — C which satisfies

(1) = 1 (15)
Tr(XY) = Tr(YX) (16)
TH(XE,) = TH(X) (7)

On the left hand side of equation [I7 the trace is on TL, (D), and X is an element of TL,, (D) not containing
E,_1. On the right hand side of equation[I7] the trace is on TL,,_1(D), and X’ is the element of TL,,_1(D)
which corresponds to X in the obvious way since X does not contain F,_1.

We'll show that the Fibonacci representation satisfies the properties implied by equations [I1l, 12, I3} and
4 We'll also show that Tr on the Fibonacci representation satisfies the properties corresponding to [I5] 16
and [[7 It was shown in [3] that properties I3l [[6 and [along with linearity, uniquely determine the map
Tr. It will thus follow that /Tvr(p;?) (b)) = Tr(pa(b)), which proves that the Jones polynomial is obtained from
the trace Tr of the Fibonacci representation after multiplying by the appropriate powers of D and (—A) as
shown in equation Since these powers are trivial to compute, the problem of approximating the Jones
polynomial at A = e"7/5 reduces to the problem of computing this trace.

Tr is equal to the ordinary matrix trace on the subspace of strings ending in * plus ¢ times the matrix
trace on the subspace of strings ending in p. Thus the fact that the matrix trace satisfies property
immediately implies that Tr does too. Furthermore since the dimensions of these subspaces are f,,—1 and
fn respectively, we see from equation [§ that Tr = 1. To address property [, we’ll first show that

Tr [;Ey = —Tr (18)

for some constant ¢ which we will calculate. We will then use equation [I1] to relate § to D.
Using the definition of Tr we obtain

sp * p Sp p,p
—~ 1
T [;Ej = — Iizﬁ + I;Ej
r A fu & Fns (bse; A (bse; A
" ospiap " spipp
Sx p p
SGQn 2 SGQn 2 56Q2172 % p\p

14

where Q! _, is the set of length n — 2 strings of * and p symbols which begin with *, end with p, and have
no two * symbols in a row.
Next we expand according to the braiding rules described in equations 2] and [3

Sp, * P sSp, PP Sp,p *
1
= — ¢c + ge +a
fn¢+fnfl Z
SEQn_2
Sp *x p Sp pp p px
S* p * Sx p p
+ Z b + ¢a
e | sap S* pp

We know that matrix elements in which differing string symbols are separated by unbraided strands will be
zero. To obtain the preceding expression we have omitted such terms. Simplifying yields

Sp, * sp. p sx p

1
- b + (¢e + a) + (b+ ¢a)
fn + ¢fn—1 56§72 SGQZilz

Sp o sSp P p

By the definitions of A, a, b, and e, given in equation Ml we see that ¢e + a = b + ¢a. Thus the above
expression simplifies to

S P
1
=——— | > ¢c + Y (ge+a)
Fn® + fna s€Q) SEQn—1
n—1 Sk n— p
Now we just need to show that
¢c 1 1
_ = 19
fn(b‘i'fnfl 6fn71¢+fn72 ()
and de+) p
e+a
== . 20
[R R ey (20)
The Fibonacci numbers have the property
fn¢+ fn—l _ Qb
o190+ frn—2
for all n. Thus equations [[9 and 20l are equivalent to
1
pc = g¢ (21)
and
Lo
pe+a= g¢ (22)

respectively. For A = ¢®™/% these both yield § = A — 1. Hence

Sk Y
N 1
Tr [;ﬁ =57 s f + ¢
A fnfl(b + fn*2 SG%:;I d segfl

15

| =

= S0,

thus confirming equation [I8
Now we calculate D from §. Solving [Tl for E; yields

E;i= A pa(oy) — A1 (23)

Substituting this into [yields

Tr(X (A pa(o;) — A721)) = %Tr(X)

= A7 Tr(Xpa(oy)) — A2 Tr(X) = %Tr(X).

Comparison to our relation Tr(Xpa(0;)) = $Tr(X) yields

1 1
ATl — A2 = —
] D
Solving for D and substituting in A = 7/ yields
D = ¢.

This is also equal to —A? — A~2 consistent with the usage elsewhere.

Thus we have shown that Tr has all the necessary properties. We will next show that the image of the
representation pg of the braid group B,, also forms a representation of the Temperley-Lieb algebra T L, (D).
Specifically, E; is represented by

Ei— AW (e,) — A1, (24)

To show that this is a representation of T'L, (D) we must show that the matrices described in equation
satisfy the properties [[2] [3] and [[4 By the theorem of [3] which shows that a Markov trace on any
representation of the Temperley-Lieb algebra yields the Jones polynomial, it will follow that the trace of the
Fibonacci representation yields the Jones polynomial.

Since pp is a representation of the braid group and o,0; = 0;0; for |i —j| > 1, it immediately follows that
the matrices described in equation [24] satisfy condition Next, we’ll consider condition 4l By inspection
of the Fibonacci representation as given by equation [3, we see that by appropriately ordering the basig] we
can bring p4(o;) into block diagonal form, where each block is one of the following 1 x 1 or 2 x 2 possibilities.

@ WG

Thus, by equation 24, it suffices to show that

S e T R P B i]

(Ala— A2 =D(A 'a— A7),

and
(A7 — A?)2 = D(A™ b — A?),

i.e. each of the blocks square to D times themselves. These properties are confirmed by direct calculation.

4We will have to choose different orderings for different o;’s.

16

Now all that remains is to check that the correspondence satisfies property M3l Using the rules
described in equation Bl we have

b 0 *P*P c d *P*D
0 a *ppp d e *PPP
a *pp* a *pp*
3 e 0 d 3 e d O
) = S I I a0 |
d 0 c P*pP 0 0 a p*pp
e d PPP* a O pPPP*
L d c | ppx L 0 b | p*px*

(Here we have considered all four subspaces unlike in equation [fl) Substituting this into equation 24] yields
matrices which satisfy condition[T4l It follows that equation 24]yields a representation of the Temperley-Lieb
algebra. This completes the proof that

Vier (A74) = (= AP D" T (o (b))

for A = e®B7/5,

B Density of the Fibonacci representation

In this appendix we will show that pg’i) (By,) is a dense subgroup of SU(f,—1) modulo phase, and that

piz)(Bn) and piz)(Bn) are dense subgroups of SU(f,) modulo phase. Similar results regarding the path
model representation of the braid group were proven in [I]. Our proofs will use many of the techniques
introduced there.

We'll first show that iji) (B4) modulo phase is a dense subgroup of SU(2). We can then use the bridge
lemma from [I] to extend the result to arbitrary n.

Proposition 1 pii) (B4) modulo phase is a dense subgroup of SU(2).

Proof: Using equation [3] we have:

(4) @ b0 KPRP* (4) e d KPRP*
P (UI) = Pxx (03) - |: 0 a :| *Ppp* P (02) = |: d

We do not care about global phase so we will take

n 1 n
PP (o) —) (04)
(det 2 (02))

to project into SU(f,—1). Thus we must show the group (A, B) generated by

i8] asmali]

is a dense subgroup of SU(2). To do this we will use the well known surjective homomorphism ¢ : SU(2) —
SO(3) whose kernel is {+1} (cf. [B], pg. 276). A general element of SU(2) can be written as

0 . [0
cos | 5 1 +sin 3 [xog + Yo, + 20;]

17

where o, 0, 0, are the Pauli matrices, and x, y, 2 are real numbers satisfying 22 + y* + 22 = 1. ¢ maps
this element to the rotation by angle 6 about the axis

x
=1y
z

Using equations 25 and [, one finds that ¢(A) and ¢(B) are both rotations by 77 /5. These rotations are
about different axes which are separated by angle

—4\/ab(ce — d?)(e — ¢)
012 = cos™ ~ 0.739447844528 . ..
12 = €08 ((a—1b)((c—e)? + 242
To show that pf(;) (B4) modulo phase is a dense subgroup of SU(2) it suffices to show that ¢(A) and ¢(B)
generate a dense subgroup of SO(3). To do this we take advantage of the fact that the finite subgroups of
SO(3) are completely known.

Theorem 2 ([5] pg. 184) Every finite subgroup of SO(3) is one of the following:
Cy: the cyclic group of order k
Dy the dihedral group of order k
T': the tetrahedral group (order 12)
O: the octahedral group (order 24)

I: the icosahedral group (order 60)

If we can show that (¢(A),#(B)) is not contained in any one of these groups then (p(A), #(B)) must be
infinite and we are done.

Since ¢(A) and ¢(B) are rotations about different axes we know that (¢(A), #(B)) is not Cj, or Dj,. Next,
we note that R = ¢(A)°4(B)® is a rotation by 2615. By direct calculation, 2615 is not an integer multiple of
27 /k for k =1,2,3,4, or 5. Thus R has order greater than 5. As mentioned on pg. 262 of [16], T, O, and I
do not have any elements of order greater than 5. Thus, (¢(A), ¢(B)) is not contained in C, O, or I, which
completes the proof. Alternatively, using more arithmetic and less group theory, we can see that 2615 is not
any integer multiple of 27/k for any k& < 30, thus R cannot be in T', O, or I since its order does not divide
the order of any of these groups. [

Next we’ll consider pfﬂ) for larger n. These will be matrices acting on the strings of length n + 1. These

can be divided into those which end in pp* and those which end in *p*. The space upon which pf(;) acts

can correspondingly be divided into two subspaces which are the span of these two sets of strings. From

equation Bl we can see that pgﬂ)(al) e pii)(an,g) will leave these subspaces invariant. Thus if we order

our basis to respect this grouping of strings, pf(;) (01) .. .pi’:) (0n—3) will appear block-diagonal with a block

corresponding to each of these subspaces.

The possible prefixes of xpx are all strings of length n — 2 that start with % and end with p. Now consider
the strings acted upon by piﬁ_m. These have length n — 1 and must end in *. The possible prefixes of this *
are all strings of length n — 2 that begin with * and end with p. Thus these are in one to one correspondence

with the strings acted upon by pgfi) that end in *p+. Furthermore, since the rules[3 depend only on the three

symbols neighboring a given crossing, the block of pg’i) (01) .. .pgfi) (on—3) corresponding to the *p* subspace

is exactly the same as p{" 2 (1) ... p\% 2 (0,,_3). By a similar argument, the block of p{? (1) ... p{ (0n_3)

corresponding to the ppx is exactly the same as piﬁfl)(al) . .piﬁfl)(on_g).
For any n > 3, piz)(on_g) will not leave these subspaces invariant. This is because the crossing o, _o

spans the (n — 1)™ symbol. Thus if the (n — 2)™ and n'" symbols are p, then by equation [3 piz) can flip

18

the value of the (n — 1)™ symbol. The n*® symbol is guaranteed to be p, since the (n + 1)™ symbol is the
last one and is therefore * by definition. For any n > 3, the space acted upon by pf(;) (05—1) will include
some strings in which the (n — 2)*® symbol is p.

As an example, for five strands:

b 0 0 *p*pp* c d 0 *p*pp*

5 5
P @)=1]0 a 0| *pppp paw)=|d e 0| *ppppx
| 0 0 a | =pp+*px | 0 0 a | =pp+*px
[a 0 0 *p*pp* [a 0 07 *p*pp*

5 5
P (o3)=1| 0 e d | *pppp+ poa)=10 a 0| *ppppx
| 0 d c | #pp*p* | 0 0 b | *pp*px

We recognize the upper 2 x 2 blocks of pii)(ol), and pii)(og) from equationBl The lower 1 x 1 block matches

pii)(ol) and pig*)(og), which are both easily calculated to be [a]. pii)(03) mixes these two subspaces.

We can now use the preceding observations about the recursive structure of {pi2)|n =4,5,6,7...} to
show inductively that piz)(Bn) forms a dense subgroup of SU(f,—1) for all n. To perform the induction step

we use the bridge lemma and decoupling lemma from [IJ.

Lemma 1 (Bridge Lemma) Let C = A® B where A and B are vector spaces with dim B > dim A > 1.
Let W € SU(C) be a linear transformation which mizes the subspaces A and B. Then the group generated
by SU(A), SU(B), and W s dense in SU(C).

Lemma 2 (Decoupling Lemma) Let G be an infinite discrete group, and let A and B be two vector spaces
with dim(A) # dim(B). Let p, : G — SU(A) and pp : G — SU(B) be homomorphisms such that p,(G) is
dense in SU(A) and py(G) is dense in SU(B). Then for any U, € SU(A) there exist a series of G-elements
ay, such that limy, o po(an) = U, and limy, o0 pp(an) = 1. Similarly, for any U, € SU(B), there exists a
series B, € G such that limy, o0 po(Brn) = 1 and limy, 00 pa(Br) = Us.

With these in hand we can prove the main proposition of this appendix.

Proposition 2 For any n > 3, pSﬁ) (B4) modulo phase is a dense subgroup of SU(fn—1).

Proof: As mentioned previously, the proof will be inductive. The base cases are n = 3 and n = 4. As
mentioned previously, pii)(ol) = pii)(og) = [a]. Trivially, these generate a dense subgroup of (indeed, all
of) SU(1) = {1} modulo phase. By proposition [} s (1), and pii)(og) generate a dense subgroup of

SU(2) modulo phase. Now for induction assume that p£2‘1>(Bn,1) is a dense subgroup of SU(f,_2) and

pfﬂ_m (Bn—2) is a dense subgroup of SU(f,—3). As noted above, these correspond to the upper and lower

blocks of p{™(51) ... p{")(0n_2). Thus, by the decoupling lemma, p\") (B,,) contains an element arbitrarily
close to U 1 for any U € SU(f,,—2) and an element arbitrarily close to 1 ® U for any U € SU(f,,—3). Since,

as observed above, pf(;) (0r,—1) mixes these two subspaces, the bridge lemma shows that piz)(Bn) is dense in

SU(fpn-1). O
From this, the density of piz) and p](ﬂ) easily follow.

Corollary 1 piz)(Bn) and pz(,i)(Bn) are dense subgroups of SU(f,) modulo phase.

Proof: It is not hard to see that

P) = p (o)
P (onr) = AT (00mn)

19

As we saw in the proof of proposition [2] pffiﬂ)(on) is not necessary to obtain density in SU(f,), that

is, (p"T (1), ..., pl T (001)) is a dense subgroup of SU(f,) modulo phase. Thus, the density of p{”

in SU(f,) follows immediately from the proof of proposition By symmetry, pgi)(Bn) is isomorphic to

piz)(Bn), thus this is a dense subgroup of SU(f,,) modulo phase as well. O

C Zeckendorf Representation

Following [18], to construct the Fibonacci representation of the braid group, we use strings of p and * symbols
such that no two * symbols are adjacent. There exists a bijection z between such strings and the integers,
known as the Zeckendorf representation. Let P, be the set of all such strings of length n. To construct the
map z: P, — {0,1,..., fnio} we think of * as one and p as zero. Then, for a given string s = $,8,-1...51

we associate the integer
n

2(s) =Y sifirt, (26)

=1

where f; is the i*" Fibonacci number: f; = 1, fo = 1, f3 = 2, and so on. In this appendix we’ll show the
following.

Proposition 3 For any n, the map z: P, — {0,..., foy2} defined by z(s) = >0, s; fiy1 is bijective.

Proof: We’ll inductively show that the following two statements are true for every n > 2.
A,z maps strings of length n starting with p bijectively to {0,..., fnt1 — 1}.
Bn: z maps strings of length n starting with * bijectively to { fny1,..., fn+2 — 1}.

Together, A,, and B, imply that z maps P, bijectively to {0,..., fn42 — 1}. As a base case, we can
look at n = 2.

pp < 0
px = 1
*¥p 2

Thus As and By are true. Now for the induction. Let s,_1 € P,_1. By equation 26,
2(pSn—1) = z(Sp—1)-

Since s,_1 follows a p symbol, it can be any element of P,_;. By induction, z is bijective on P,_1, thus A,
is true. Similarly, by equation

2(*¥8p-1) = foy1 + 2(5n-1).
Since s,_1 here follows a x*, its allowed values are exactly those strings which start with p. By induction,
A, tells us that z maps these bijectively to {0,..., f, — 1}. Since fn41 + fn = fnt2, this implies B, is
true. Together, A, and B,, for all n > 2, along with the trivial n = 1 case, imply proposition Bl O

References

[1] Dorit Aharonov and Itai Arad. The BQP-hardness of approximating the Jones polynomial. 2006.
arXiv:quant-ph/0605181.

[2] Dorit Aharonov, Itai Arad, Elad Eban, and Zeph Landau. Polynomial quantum algorithms for additive
approximations of the Potts model and other points of the Tutte plane. arXiv:quant-ph/0702008, 2007.

20

3]

[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]
[23]

Dorit Aharonov, Vaughan Jones, and Zeph Landau. A polynomial quantum algorithm for approximating
the Jones polynomial. STOC 06, 2006. arXiv:quant-ph/0511096.

Andris Ambainis, Leonard Schulman, and Umesh Vazirani. Computing with highly mixed states. Jour-
nal of the ACM, 53(3):507-531, May 2006.

Michael Artin. Algebra. Prentice Hall, 1991.

Adriano Barenco, Artur Ekert, Kalle-Antti Suominen, and Paivi Térmé&. Approximate quantum Fourier
transform and decoherence. Phyical Review A, 54(1):139-146, 1996. arXiv:quant-ph/9601018.

David A. Barrington. Bounded-width polynomial-size brancing programs recognize exactly those lan-
guages in NC*. Journal of Computer and System Sciences, 38:150-164, 1989.

Steven A. Cuccaro, Thomas G. Draper, Samuel A. Kutin, and David Petrie Moulton. A new quantum
ripple-carry addition circuit. arXiv:quant-ph/0410184, 2004.

Animesh Datta, Steven T. Flammia, and Carlton M. Caves. Entanglement and the power of one qubit.
Physical Review A, 72(042316), 2005. arXiv:quant-ph/0505213.

Thomas Draper. Addition on a quantum computer. arXiv:quant-ph/0008033, 2000.

Michael Freedman, Alexei Kitaev, and Zhenhan Wang. Simulation of topological field theories by
quantum computers. Communications in Mathematical Physics, 227:587-603, 2002.

Michael Freedman, Michael Larsen, and Zhenghan Wang. A modular functor which is universal for
quantum computation. 2000. arXiv:quant-ph/0001108.

W. Haken. Theorie der normalflachen, ein isotopiekriterium fiir den kreisknoten. Acta Mathematica,
(105):245-375, 1961.

Joel Hass, Jeffrey Lagarias, and Nicholas Pippenger. The computational complexity of knot and link
problems. Journal of the ACM, 46(2):185-211, 1999. arXiv:math.GT/9807016.

F. Jaeger, D. L. Vertigan, and D. J. A. Welsh. On the computational complexity of the Jones and Tutte
polynomials. Mathematical Proceedings of the Cambridge Philosophical Society, (108):35-53, 1990.

Vaughan F. R. Jones. Braid groups, Hecke algebras and type II; factors. In Geometric methods in
operator algebras, US-Japan Seminar, pages 242-273, Kyoto, July 1983.

Vaughan F. R. Jones. A polynomial invariant for knots via von Neumann algebras. Bulletin of the
American Mathematical Society, 12:103-111, 1985.

Louis H. Kauffman and Samuel J. Lomonaco Jr. g-deformed spin networks knot polynomials and anyonic
topological quantum computation. arXiv:quant-ph/0606114, 2006.

Alexei Yu. Kitaev. Quantum computations: algorithms and error correction. Russian Mathematical
Surveys, 52(6):1191-1249, 1997.

E. Knill and R. Laflamme. Power of one bit of quantum information. Physical Review Letters,
81(25):5672-5675, 1998. arXiv:quant-ph/9802037.

Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge
University Press, 2000.

Christos Papadimitriou. Computational Complexity. Addison Wesley, 1994.
L. J. Schulman and U. Vazirani. Molecular scale heat engines and scalable quantum computation. STOC

99, pages 322-329, 1999.

21

Dan Shepherd. Computation with unitaries and one pure qubit. 2006. arXiv:quant-ph/0608132.
Ingo Wegener. The Complexity of Boolean Functions. Wiley, 1987.

Edward Witten. Quantum field theory and the Jones polynomial. Communications in Mathematical
Physics, 121(3):351-399, 1989.

Pawel Wocjan and Jon Yard. The Jones polynomial: quantum algorithms and applications in quantum
complexity theory. arXiv:quant-ph/0603069, 2006.

22

	One Clean Qubit
	Jones Polynomials
	Fibonacci Representation
	Computing the Jones Polynomial in DQC1
	DQC1-hardness of Jones Polynomials
	Conclusion
	Acknowledgements
	Jones Polynomials by Fibonacci Representation
	Density of the Fibonacci representation
	Zeckendorf Representation

